检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:焦侃 冯刘涛 张磊[1] 胡志新[1] JIAO Kan;FENG Liutao;ZHANG Lei;HU Zhixin(School of Construction Machinery,Chang’an University,Xi’an 710064,China;Guoguang Electric Co Ltd Chengdu,Chengdu 610051,China)
机构地区:[1]长安大学工程机械学院,陕西西安710064 [2]成都国光电气股份有限公司,四川成都610051
出 处:《传感器与微系统》2022年第5期72-75,83,共5页Transducer and Microsystem Technologies
基 金:国家自然科学基金资助项目(62003053);陕西省自然科学基金资助项目(2020JQ—389);中科院开放项目(20200604)。
摘 要:面向智能移动终端的室内位置服务具有广阔的市场应用前景。针对复杂室内遮挡环境中基于测距的定位系统的信标节点布局优化问题,基于几何精度因子(GDOP),提出了一种新的适用于遮挡环境条件的适应度函数。基于粒子群优化(PSO)算法进行求解,并对其详细计算过程进行了阐述。数值仿真结果表明:所提出的适应度函数能够有效解决遮挡环境中的信标节点布局优化问题,并能够通过适应度函数的权重对信标节点布局优化的结果进行控制。实际场景的实验结果表明:所提出方法能够有效提高系统的定位性能和稳定性。The indoor localization-based services for smart mobiles have broad market applicaion prospect.Aiming at problem of beacon node deployment optimization for range-based positioning system complex indoor occlusion environment,a novel fitness function suitable for occlusion environment is proposed based on the criterion of geometric dilution of precision(GDOP).The optimization problem is solved based on particle swarm optimization(PSO)algorithm,and the detail of the calculation process is introduced.The numerical simulation results show that the proposed fitness function can efficiently solve the beacon node deployment optimization problem in occlusion environment,and to control optimized deployment result by the weights of proposed fitness function.The result of experiment in real scene shows that the proposed method can improve the positioning performance and stability of system.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.99.121