Conjugate-Gradient Progressive-Iterative Approximation for Loop and Catmull-Clark Subdivision Surface Interpolation  被引量:2

在线阅读下载全文

作  者:Yusuf Fatihu Hamza Hong-Wei Lin Yusuf Fatihu Hamza;蔺宏伟(School of Mathematical Science,Zhejiang University,Hangzhou 310027,China;State Key Laboratory of CAD & CG,Zhejiang University,Hangzhou 310058,China)

机构地区:[1]School of Mathematical Science,Zhejiang University,Hangzhou 310027,China [2]State Key Laboratory of CAD Sz CG,Zhejiang University,Hangzhou 310058,China

出  处:《Journal of Computer Science & Technology》2022年第2期487-504,共18页计算机科学技术学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos.61872316 and 61932018.

摘  要:Loop and Catmull-Clark are the most famous approximation subdivision schemes,but their limit surfaces do not interpolate the vertices of the given mesh.Progressive-iterative approximation(PIA)is an efficient method for data interpolation and has a wide range of applications in many fields such as subdivision surface fitting,parametric curve and surface fitting among others.However,the convergence rate of classical PIA is slow.In this paper,we present a new and fast PIA format for constructing interpolation subdivision surface that interpolates the vertices of a mesh with arbitrary topology.The proposed method,named Conjugate-Gradient Progressive-Iterative Approximation(CG-PIA),is based on the Conjugate-Gradient Iterative algorithm and the Progressive Iterative Approximation(PIA)algorithm.The method is presented using Loop and Catmull-Clark subdivision surfaces.CG-PIA preserves the features of the classical PIA method,such as the advantages of both the local and global scheme and resemblance with the given mesh.Moreover,CG-PIA has the following features.1)It has a faster convergence rate compared with the classical PIA and W-PIA.2)CG-PIA avoids the selection of weights compared with W-PIA.3)CG-PIA does not need to modify the subdivision schemes compared with other methods with fairness measure.Numerous examples for Loop and Catmull-Clark subdivision surfaces are provided in this paper to demonstrate the efficiency and effectiveness of CG-PIA.

关 键 词:progressive-iterative approximation Loop subdivision Catmull-Clark subdivision conjugate-gradient method 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象