检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李霜 董玮[1] 董会旭 凌云飞 张歆东[1] LI Shuang;DONG Wei;DONG Huixu;LING Yunfei;ZHANG Xindong(College of Electronic Science and Engineering,Jilin University,Changchun 130012,China;School of Aviation Operations and Services,Aviation University of Air Force,Changchun 130022,China)
机构地区:[1]吉林大学电子科学与工程学院,长春130012 [2]空军航空大学航空作战勤务学院,长春130022
出 处:《空军工程大学学报(自然科学版)》2022年第2期55-60,共6页Journal of Air Force Engineering University(Natural Science Edition)
摘 要:针对传统识别辐射源信号的方法需要手动提取并选取特征、在低信噪比条件下难以准确识别信号的问题,提出了一种基于改进UNet3+网络的辐射源信号识别方法。通过删减UNet3+的网络层级,保留网络特征融合能力的同时降低了网络的复杂度,并引入注意力机制优化模型性能,构建了一个新的网络模型。通过对8种常见的雷达信号进行仿真实验,实验结果表明:改进模型的识别准确率达到96.63%,对比一些经典网络模型,训练总用时更短,在低信噪比条件下能更加有效识别辐射源信号,可以适应复杂的电磁环境。Aimed at the problems that traditional emitter signal identification methods often need to carry out artificial feature extraction and signals are difficult to be identified accurately under condition of low SNR environments,a method of emitter signal recognition based on improved UNet3+ network is proposed.By trimming the UNet3+ network hierarchy,the feature fusion ability is retained while the complexity of the network is reduced.The attention mechanism is introduced to optimize the model performance,and a new network model is constructed.The simulation results of eight common radar signals show that the recognition accuracy of the improved model reaches 96.63%.Compared with some classical network models,the total training time is shorter,and the ability to identify the radiation source signal is more effectively under condition of low SNR environments.And the proposed model can also be adapted to the complex electromagnetic environments.
关 键 词:雷达信号 深度学习 Unet3+ 注意力机制 低信噪比
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.221