Planar Tetracoordinate Carbon in 6σ+2π Double Aromatic CBe_(4)^(2-) Derivatives  

在线阅读下载全文

作  者:JIN Bo BIAN Jian-Hong ZHAO Xue-Feng YUAN Cai-Xia GUO Jin-Chang WU Yan-Boa 晋博;边建红;赵雪锋;袁彩霞;郭谨昌;吴艳波(Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province,Institute of Molecular Science,Shanxi University,Taiyuan 030006,China;Department of Chemistry,Changzhi University,Changzhi 046011,China)

机构地区:[1]Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province,Institute of Molecular Science,Shanxi University,Taiyuan 030006,China [2]Department of Chemistry,Changzhi University,Changzhi 046011,China

出  处:《Chinese Journal of Structural Chemistry》2022年第3期218-226,I0013,共10页结构化学(英文)

基  金:Supported by the National Natural Science Foundation of China (Nos. 21720102006, 22073058, and 21973055);the Natural Science Foundation of Shanxi Province (Nos. 201901D111018 and 201901D111014);the Shanxi “1331 Project” Engineering Research Center (PT201807);the Shanxi 1331KIRT;the HPC of Shanxi University

摘  要:As a typical electron deficient element,beryllium is potentially suitable for designing the species with novel non-classical planar hypercoordinate carbon due to high preference for the planar structures by small beryllium-containing clusters.In particular,the CBe_(5)^(4–)cluster with a planar pentacoordinate carbon(ppC)had been proved by many previous studies to be an excellent template structure for the systematic design of ppC species through attaching various monovalent atoms on the bridging position of Be–Be edges.In this work,based on the analysis and extension on our recently reported CBe_(4)M_(n)^(n–2)(M=Li,Au,n=1~3)species,we propose that ptC cluster CBe_(4)^(2-)is similar to CBe54–in that it can also be employed as a template structure to systematically design the ptC species through binding various monovalent atoms on the bridging position of Be–Be edges.Our extensive screening suggests that the feasible bridging atoms(E)can be found in group 1(H,Li,Na),group 11(Cu,Ag,Au),and group 17(F,Cl,Br,I)elements,leading to total thirty eligible ptC species with CBe4 core moiety(CBe4Enn–2).The ptC atoms in these species are involved into three delocalized s bonds and a delocalized p bond,thereby not only obeying the octet rule,but also possessing novel 6s+2p double aromaticity,which significantly stabilizes the ptC arrangement.In addition,the attached bridging atoms can stabilize the CBe4 core ptC moiety by replacing the highly diffused Be–Be two-center two-electron bonds with the much less diffused Be–E two-center two-electron bonds or Be–E–Be three-center two-electron bonds,as reflected by the increasing HOMO-LUMO gaps when the number of bridging atoms increases.Remarkably,the stochastic search algorithm in combination with high level CCSD(T)calculations revealed that twenty-six of the thirty-one ptC species(including previously reported six species)were global energy minima on their corresponding potential energy surfaces,in which twenty-five of them were also confirmed to be dynamically v

关 键 词:planar hypercoordinate carbon AROMATICITY BERYLLIUM DFT calculations global energy minimum 

分 类 号:O641.4[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象