检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:都泽鑫 孟鸿晨 宋名果 张志鹏 李雪峰 孟庆宽[1] DU Zexin;MENG Hongchen;SONG Mingguo;ZHANG Zhipeng;LI Xuefeng;MENG Qingkuan(College of Automation and Electrical Engineering,Tianjin University of Technology and Education,Tianjin 300222;Tianjin Yongding River Management Center,Tianjin 300131)
机构地区:[1]天津职业技术师范大学自动化与电气工程学院,天津300222 [2]天津市永定河管理中心,天津300131
出 处:《热带农业工程》2022年第2期42-46,共5页Tropical Agricultural Engineering
基 金:天津市自然科学基金项目(No.18JCQNJC04500);大学生创新创业训练计划项目(No.202010066040)。
摘 要:田间杂草容易对蔬菜生长产生不利影响,快速准确的检测蔬菜幼苗并去除杂草对提高蔬菜产量和质量有较大影响。针对复杂农业环境下常规蔬菜幼苗识别方法存在的识别精度低、检测速度慢等问题,本文将Faster-RCNN模型引入到蔬菜幼苗识别检测中,先采用Resnet50残差网络作为前置基础网络提取作物特征,然后将特征送入候选区域建议网络进行先验框调整,最后通过感兴趣区域池化网络和全连接层完成目标分类定位。将检测完成的蔬菜幼苗检测模型部署在NVIDIA Jetson TX2嵌入式平台进行测试,蔬菜幼苗平均识别率达到93.92%,平均检测时间为34.4 ms,具有识别速度快和准确率高等优点。本方法可以为后续农业智能装备精准作业所涉及的蔬菜幼苗检测问题提供新方案。Vegetable production is closely related to our daily life,but in the process of vegetable growth,weed damage will have a great adverse impact on crop yield and quality.If weeds can be quickly and accurately detected and removed during the crop growth cycle,vegetable production will be greatly improved.Considering the shortages of the existing methods,this paper carries out Faster-RCNN model on vegetable seedling identification.Resnet 50 residual network is adopted to extract the characteristics of crops.The final feature layer of resnet50 is sent to the RPN network to adjust the a priori box and suggestion box,which complete the target the target classification and positioning.The training model was deployed in NVIDIA Jetson TX2 embedded system for testing,and the average recognition rate of vegetable seedlings reached93.92%,and the average detection time was 34.4 ms,which had the advantages of fast recognition speed and high accuracy.Its performance can provide a new solution for the detection of vegetable seedlings involved in the precise operation of vegetable agricultural intelligent equipment.
关 键 词:深度学习 作物识别 蔬菜幼苗 Faster-RCNN模型
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33