检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨广奇 刘慧 钟锡武[1,2,4] 陈龙[1,2,4] 钱育蓉 YANG Guangqi;LIU Hui;ZHONG Xiwu;CHEN Long;QIAN Yurong(Key Laboratory of Signal Detection and Processing,Xinjiang Uygur Autonomous Region,Urumqi 830046,China;College of Software,Xinjiang University,Urumqi 830000,China;College of Information Science and Engineering,Xinjiang University,Urumqi 830000,China;Key Laboratory of Software Engineering,Xinjiang University,Urumqi 830000,China)
机构地区:[1]新疆维吾尔自治区信号检测与处理重点实验室,乌鲁木齐830046 [2]新疆大学软件学院,乌鲁木齐830000 [3]新疆大学信息工程学院,乌鲁木齐830000 [4]新疆大学软件工程重点实验室,乌鲁木齐830000
出 处:《计算机工程与应用》2022年第10期27-40,共14页Computer Engineering and Applications
基 金:国家自然科学基金(61966035);数据驱动的中俄云计算共享平台建设项目(2020E01023);新疆维吾尔自治区研究生创新项目(XJ2021G062)。
摘 要:高时空分辨率的遥感图像大数据在遥感领域发挥着重要作用。然而,由于技术上和预算上的限制等原因,目前单一的卫星传感器无法获取同时具有高空间分辨率和高时间分辨率的遥感影像。因此遥感图像时空融合技术被认为是解决时间分辨率和空间分辨率折衷问题的有效途径之一。随着深度学习在各领域的广泛应用,深度学习技术已经被证实是解决图像问题非常有效的方法。针对国内外学者的研究成果,全面总结遥感图像时空融合的经典算法,同时重点分析基于深度学习的遥感图像时空融合算法的研究成果,在三个数据集上进行复现并分析实验结果,并对未来遥感图像时空融合进行展望。Big data of remote sensing image with high temporal and spatial resolution plays an important role in remote sensing field. However, due to technique and budget constraints, a single satellite sensor cannot acquire remote sensing images with both high spatial resolution and high temporal resolution. Therefore, the temporal and spatial fusion technology of remote sensing image is regarded as one of the effective ways to solve the tradeoff between temporal resolution and spatial resolution. With the wide application of deep learning in various fields, deep learning technology has been proved to be a very effective method to solve image problems. According to the research results of scholars at home and abroad,the classical algorithm of remote sensing image spatiotemporal fusion is comprehensively summarized. Meanwhile, the research results of remote sensing image spatiotemporal fusion algorithm based on deep learning are analyzed, which are replicated on three datasets and the experimental results are analyzed, and the future of remote sensing image spatiotemporal fusion is prospected.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117