检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高鑫宇 倪静[1] Gao Xinyu;Ni Jing(University of Shanghai for Science and Technology,Shanghai 200082,China)
机构地区:[1]上海理工大学,上海200082
出 处:《系统仿真学报》2022年第4期806-816,共11页Journal of System Simulation
基 金:教育部人文社会科学基金(19YJAZH064);联盟计划基金(LM201922)。
摘 要:针对应急救援问题,在受灾点的位置、需求以及受灾人口等信息动态变化的情况下,建立动态有向救援网络,以救援效率最大化为目标构建数学模型。运用数据包络分析模型,对各段救援路线的效率进行评价;建立基于效率的动态路由模型,通过时间片的划分将动态路由转化为多阶段的静态路由;设计了改进的混合贪心蚁群优化算法对模型进行求解,并将该算法与遗传算法、粒子群算法以及基础的蚁群算法进行对比。实验结果表明:改进的混合贪心蚁群优化算法能够有效处理动态路由问题,寻求到更高的救援效率。Aiming at the emergency rescue,a dynamic directed rescue network is established with the dynamic changes of the location,demand,and affected population of disaster site,and a mathematical model is constructed with the maximum rescue efficiency.A data envelope analysis model is applied to evaluate the efficiency of each rescue route segment.An efficiency-based dynamic routing model is established to transform the dynamic routes into the multi-stage static routes through the time slice division.An improved hybrid greedy-ant colony optimization algorithm is designed to solve the model,and the proposed algorithm is compared with the genetic algorithm,particle swarm optimization and basic ant colony algorithm.The experimental results show that the improved hybrid greedy-ant colony optimization algorithm can effectively carry out the dynamic routing and the rescue efficiency is high.
关 键 词:救援效率 动态网络 应急物流 混合贪心蚁群优化算法
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49