检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xinlei Yi Shengjun Zhang Tao Yang Tianyou Chai Karl Henrik Johansson
机构地区:[1]Division of Decision and Control Systems,School of Electrical Engineering and Computer Science,KTH Royal Institute of Technology,and also affiliated with the Digital Futures,Stockholm 10044,Sweden [2]Department of Electrical Engineering,University of North Texas,Denton,TX 76203 USA [3]IEEE [4]State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China
出 处:《IEEE/CAA Journal of Automatica Sinica》2022年第5期812-833,共22页自动化学报(英文版)
基 金:supported by the Knut and Alice Wallenberg Foundation;the Swedish Foundation for Strategic Research;the Swedish Research Council;the National Natural Science Foundation of China(62133003,61991403,61991404,61991400)。
摘 要:The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.
关 键 词:Distributed nonconvex optimization linear speedup Polyak-Lojasiewicz(P-L)condition primal-dual algorithm stochastic gradient descent
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.28.64