服务员休假的生产服务库存模型的稳态分析及最优生产策略  被引量:1

Steady-state Analysis and Optimal Production Strategy of Production Service Inventory Model with Server’s Vacation

在线阅读下载全文

作  者:徐浩 岳德权[1] XU Hao;YUE Dequan(School of Science,Yanshan University,Qinhuangdao 066004)

机构地区:[1]燕山大学理学院,秦皇岛066004

出  处:《工程数学学报》2022年第1期63-78,共16页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(71971189);河北省自然科学基金(A2017203078);河北省高等学校科技计划重点项目(ZD2018042)。

摘  要:将服务员休假与生产服务库存相结合,研究带有服务员休假的M/M/1生产服务库存系统模型。需求(顾客)的到达过程服从Poisson过程,顾客的服务时间和每个产品的生产时间都服从指数分布。当系统库存为零时,服务员开始随机长度的休假。假设休假时间服从指数分布。首先,利用拟生灭过程理论给出了系统的稳态平衡条件。其次,对忽略服务时间的生产服务库存系统模型进行了稳态分析,得到了此系统的稳态概率的明显的解析表达式,进而证明了系统的稳态概率分布具有乘积解形式的结构。在此基础上,进一步得到了系统的一些稳态性能指标和费用函数的计算公式,数值求解了模型的最优(s,S)库存策略,并研究系统的一些参数对性能指标、最优策略和最优费用的影响。The production service inventory system with server’s vacation by combining the server’s vacation and the production-service inventory is examined in the paper. Demands(customers) arrive according to a Poisson process, and the service time of each customer and the production time of each product are all assumed to be exponentially distributed. When the inventory is depleted, the server goes to a random time of a vacation. It is assumed that the vacation time follows an exponential distribution. Firstly, the steady state condition of the system is obtained by using the quasi-birth-and-death process. Then, the steady-state analysis is established for the case of the system model with negligible service time and the explicit expressions of the steady state probabilities is obtained of this special case. Furthermore, it is proved that the steady-state probability distribution of the system has a structure of product form solution. On this basis, some performance indexes and cost function are calculated. Finally, the optimal(s, S) inventory strategy of the model is numerically obtained. The numerical analysis is performed to study the influence of some system parameters on performance indexes,the optimal inventory strategy and the optimal cost.

关 键 词:生产服务库存系统 服务员休假 损失销售 拟生灭过程 (s S)策略 

分 类 号:O226[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象