基于极限梯度爬升算法与支持向量回归算法变权组合模型致密油的采收率预测  被引量:6

Tight Oil Recovery Prediction Based on Extreme Gradient Boosting Algorithm and Support Vector Regression Algorithm Variable Weight Combination Model

在线阅读下载全文

作  者:张金水 田冷[1] 黄诗慧 董鹏举 ZHANG Jin-shui;TIAN Leng;HUANG Shi-hui;DONG Peng-ju(China Petroleum University (Beijing), Beijing 102200, China)

机构地区:[1]中国石油大学(北京)石油工程学院,北京102200

出  处:《科学技术与工程》2022年第12期4778-4787,共10页Science Technology and Engineering

基  金:国家自然科学基金(51974329)。

摘  要:致密油储层因具有渗透率与产能低下的特点,多采用大型水力压裂改造储层来提高采收率,根据不同的地质、压裂参数变化,预测改造后的采收率对于压裂施工改造有良好的指导作用。目前多因素影响的致密油压裂后采收率预测理论模型,难以实时准确地根据压裂方式及参数来预测压裂后油藏采收率变化。为进一步提升致密油的采收率预测精确度,引进机器学习进行预测,基于极限梯度爬升算法(extreme gradient boosting algorithm,XGBoost)和支持向量回归算法(support vector regression algorithm,SVR)进行了一定改进得到变权组合模型XGBoost-SVR,模型借鉴残差进化机制,实现加权融合系数的最优组合,该组合模型可对两种单模型进行优势互补,避免了因单一模型参数导致的范围性误差,增大模型预测容错率。首先对致密油的采收率影响因素进行收集整理,分析地质因素、储层因素和工程因素对采收率的影响,构造相关原始数据集;其次将预处理后数据集输入SVR单模型和XGBoost单模型分别进行训练,得出单模型预测值;最后采用基于残差的自适应的变权组合方法建立XGBoost-SVR组合模型,得到各模型最终预测结果,明确采收率影响因素及各影响因素权重比。模型预测结果表明:与SVR和XGBoost单模型相比,组合模型在预测精度达到94.63%,表现出更好的适应性。Due to the characteristics of low permeability and productivity of tight oil reservoirs,hydraulic fracturing is widely applied to improve oil recovery.According to different geological and fracturing parameter changes,predicting the recovery rate after modification is instructive for fracturing modification.At present,the theoretical model of tight oil recovery after fracturing affected by multiple factors is difficult to accurately predict the change of oil reservoir recovery after fracturing in real-time according to the fracturing method and parameters.To further improve the prediction accuracy of tight oil recovery prediction,machine learning was introduced to make predictions,some improvements were made based on the extreme gradient boosting algorithm(XGBoost)and the support vector regression algorithm(SVR),a variable weight combination model XGBoost-SVR was obtained.The combined model can complement both single model’s advantages to avoid the range error caused by a single model parameter,and thus increasing the model prediction error tolerance rate.Firstly,factors affecting the recovery of tight oil were collected and sorted,and the relevant original data sets were established after analyzing the influence of geological factors,reservoir factors,and engineering factors on the recovery factor.Secondly,the preprocessed data sets were inputted into the SVR single model and the XGBoost single model for training separately,and the single model prediction value was obtained.Finally,an adaptive variable weight combination method based on residuals was used to establish the XGBoost-SVR combination model,which can obtain the final prediction results of each model,and clarify the factors affecting the recovery factor and the weight ratio of each factor.The prediction results show that compared with the SVR and XGBoost single models,the combined model has a prediction accuracy of 94.63%,which reflects better adaptability.

关 键 词:致密油 采收率预测 极限梯度爬升算法-支持向量回归算法(XGBoost-SVR) 机器学习 

分 类 号:TE331[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象