基于大数据技术的非洲猪瘟传染病预测研究  被引量:1

Research on prediction of the breakout ofAfrican Swine Fever based on big data technology

在线阅读下载全文

作  者:高祥兰 周楠 蔡翔[3] 穆尚海 GAO Xianglan;ZHOU Nan;CAI Xiang;MU Shanghai(School of Information,Shanghai Lida University,Shanghai 201609,China;School of Management,Shinawatra University,Pathum Thani 12160,Thailand;School of Business,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China)

机构地区:[1]上海立达学院信息学院,上海201609 [2]西那瓦大学管理学院,泰国巴吞他尼府12160 [3]桂林电子科技大学商学院,广西桂林541004

出  处:《上海师范大学学报(自然科学版)》2022年第2期232-236,共5页Journal of Shanghai Normal University(Natural Sciences)

摘  要:对我国发生非洲猪瘟期间(2018年5月—2019年9月)的百度指数与该种疾病爆发的关联性进行研究,采用以省份为区域分组的二元Logistic回归模型,通过对17个地区数据的拟合,分别提前3周、提前2周、提前1周及当周预测了非洲猪瘟早期爆发的区域.研究结果表明:预测的准确率均高于91.2%,可作为对传统监测系统的有力补充.The relevance between Baidu Index during African Swine Fever occurred from May 2018 to September 2019 in China and the breakout of the disease was studied in this paper.By means of fitting the data of 17 districts,the area where African Swine Fever would outbreak was successfully predicted by the binary Logistic regression model 3,2,1 weeks in advance and in that week respectively.The results showed that the accuracy of the prediction was over 91.2%without exception,which could be a valuable supplement to the traditional monitoring system.

关 键 词:大数据 百度指数 预测 非洲猪瘟 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象