检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万圆 王艳慧[1,2,3] 华婧 齐文平 WAN Yuan;WANG Yanhui;HUA Jing;QI Wenping(College of Resources Environment and Tourism,Capital Normal University,Beijing 100048,China;Key Laboratory of 3D Information Acquisition and Application,MOE,Capital Normal University,Beijing 100048,China;Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling,Capital Normal University,Beijing 100048,China;China Centre for Resources Satellite Data and Application,Beijing 100094,China)
机构地区:[1]首都师范大学资源环境与旅游学院,北京100048 [2]首都师范大学三维信息获取与应用教育部重点实验室,北京100048 [3]首都师范大学北京城市环境过程与数字模拟国家重点实验室培育基地,北京100048 [4]中国资源卫星应用中心,北京100094
出 处:《地理信息世界》2022年第2期22-29,共8页Geomatics World
基 金:国家自然科学基金项目(42171224);国家重点研发计划项目(2018YFB0505400);北京市长城学者资助项目(CIT&TCD20190328)。
摘 要:贫困地区特征及致贫原因的探究是当前解决深层次贫困,完成乡村振兴三步走阶段性任务的关键。本文选取环京津贫困带的16个贫困县作为研究对象,利用2012、2014、2016年数据,从人地协同的自然-社会-经济视角出发,构建县级多维贫困测度模型,定量分析各贫困县综合贫困程度;利用最小方差模型(LSE)、指标贡献度和线性回归模型等方法划分各贫困县类型分析致贫因素,同时结合GIS空间自相关等方法探究贫困县空间分布及时空演变特征。结果表明:2012年整个贫困带贫困程度较深、差异较大,贫困类型主要为社会-经济协作型和自然-社会-经济综合型,经济发展潜力差、扶贫绩效收益低、区位条件较差是环京津贫困带的主要致贫因素;4年来环京津贫困县大部分已经脱离高度贫困,呈现中度贫困和较低贫困,贫困程度差异减小,自然-社会-经济综合型占主体,但区位条件、地形条件、扶贫绩效等致贫贡献度上升,自然禀赋恶劣逐渐成为主要致贫因素。The exploration of the characteristics of poverty and the causes of poverty in poverty-stricken areas is one of the keys to solve the deep-seated poverty and complete the three-step phased task of rural revitalization.Based on the 16 poverty-stricken counties'data around the Beijing-Tianjin Poverty Belt in 2012,2014 and 2016,this paper builds a county-level multidimensional poverty measurement model from the natural-social-economic 3D perspective to quantitatively analyze the comprehensive poverty level of each poverty-stricken county,and analyzes the spatial distribution characteristics of poverty-stricken counties by combining GIS spatial auto-correlation analysis methods.In addition,in this study,the least variance model(LSE)is used to build a county-level poverty type measurement model to reveal the poverty type of each poverty-stricken county and the index contribution degree and the linear regression model is used to detect the poverty-causing factors of the poverty-stricken counties and analyze the spatial-temporal evolution of the poverty level of the entire poverty belt.The results show that:in 2012,the poverty level of the whole poverty-stricken area was relatively deep,with concentrated and moderate poverty as well as large differences in poverty levels,the types of poverty were mainly social-economic cooperation and natural-social-economic comprehensiveness,poor economic development potential,low poor poverty alleviation performance benefits and poor location conditions were the main poverty-causing factors of the Beijing-Tianjin Poverty Belt.Most of the poverty-stricken counties around Beijing and Tianjin have been lifted from high-to low-degree poverty or moderate-degree poverty and the difference of poverty-degree among poor counties has decreased in the past four years,the type of natural-social-economic comprehensive poverty accounts for the main body.However,the contribution of poverty has increased in areas such as location conditions,terrain conditions and poverty alleviation performance.The p
分 类 号:P208-62[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7