检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵冬梅[1] 谢家康 王闯 王浩翔 姜威 王怡[1] ZHAO Dongmei;XIE Jiakang;WANG Chuang;WANG Haoxiang;JIANG Wei;WANG Yi(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China;China Huaneng North Weijiamao Power and Coal Co.,Ltd.,Erdos 010308,China)
机构地区:[1]华北电力大学电气与电子工程学院,北京102206 [2]中国华能北方魏家峁煤电有限责任公司,内蒙古鄂尔多斯010308
出 处:《电力系统保护与控制》2022年第8期1-10,共10页Power System Protection and Control
基 金:国家重点研发计划项目资助(2017YFB0902600);国家电网公司科技项目资助(SGJS0000DKJS1700840)。
摘 要:针对传统机器学习在处理暂态稳定评估时所表现出的稳定性差、精度低等问题以及离线训练的局限性,提出一种基于多模型融合Bagging集成学习方式的电力系统暂态稳定在线评估模型。首先,结合人工智能前沿理论研究,分析了暂态稳定评估中常用的7种机器学习算法的原理及实现方式,通过Bagging方法进行集成,充分发挥各个模型的优势。其次,给出Bagging集成的数学实现方法并进行了仿真实验。当原系统拓扑结构发生改变时,采用Boosting算法和迁移成分分析,分别对原电网历史数据进行样本迁移和特征迁移,完成对所提模型的在线更新。通过采用IEEE10机39节点系统和IEEE16机68节点系统进行分析,结果表明所提方法比传统机器学习模型精度更高。当数据中掺杂噪声时能够保持稳定运行,在系统拓扑改变时能够通过迁移历史数据进行准确的暂态稳定评估。To solve the problems of poor stability and low accuracy of traditional machine learning in transient stability assessment and the limitations of offline training,an online transient stability assessment model based on multi-model fusion Bagging ensemble learning method is proposed.First,in combination with research on the frontier theory of artificial intelligence,the principles and implement methods of seven machine learning algorithms commonly used in transient stability assessment are analyzed,and the Bagging method is used to integrate them to give full play to the advantages of each model.Secondly,the mathematical method of Bagging ensemble learning is given and a simulation experiment is carried out.When the topological structure of the original system changes,a Boosting algorithm and transfer component analysis are used to carry out sample and feature transfer of the original grid historical data to complete the online update of the proposed model.IEEE10-machine 39-bus system and IEEE16-machine 68-bus system are used in the simulation analysis,and the results show that the proposed method is more accurate than the traditional machine learning model.It can maintain stable operation when the data is mixed with noise,and accurately evaluate transient stability by transferring the historical data when the system topology changes.
关 键 词:Bagging集成学习 电力系统 机器学习 暂态稳定 迁移学习 在线更新
分 类 号:TM712[电气工程—电力系统及自动化] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117