检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卫刚[1] 邵伟 王志成[1] WEI Gang;SHAO Wei;WANG Zhicheng(College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)
机构地区:[1]同济大学电子与信息工程学院,上海201804
出 处:《同济大学学报(自然科学版)》2022年第4期590-600,共11页Journal of Tongji University:Natural Science
摘 要:现有的新闻推荐模型一般由文本特征提取网络和推荐网络两部分组成。新闻相关的边信息(如类别信息)并没有作用在文本特征提取过程中。在未融合边信息的情况下,文本特征提取网络和推荐网络两部分的优化目标是有差异的。提出SIACNN(Side Information Aggregated CNN)的结构,它通过注意力机制的方式,将边信息结合到文本特征提取中,缩小了文本特征提取和推荐网络之间优化目标的差异,有效提升了新闻推荐的效果。将SIACNN替换多个典型新闻推荐网络中的卷积神经网络,并利用MSN(微软新闻)采集的大型新闻数据集MIND(MIcrosoft News Dataset)来进行实验,通过实验证明了SIACNN能提高推荐效果,并同时具有泛化性。Existing news recommendation models generally consist of the text feature extraction network and the recommendation network.News-related side information,such as category,is not fused into the text feature extraction network.Without fusing it,there are differences between the optimization targets of the text feature extraction network and the recommendation network.In this paper,a general SIACNN(side information aggregated CNN)layer is proposed.The SIACNN layer fuses the side information into the text feature through the attention mechanism,which bridges the gap between text feature extraction and recommendation tasks and improves the effectiveness of the recommendation.CNNs are replaced in many state-of-the-art models which used CNNs to extract the text feature with the SIACNN and several experiments are conducted in a large real-world news recommendation dataset MIND(MIcrosoft News Dataset)collected from MSN(MicroSoft News).The recommendation effectiveness and generality of SIACNN are verified by several experiments.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3