Steganalysis of Low Embedding Rate CNV-QIM in Speech  

在线阅读下载全文

作  者:Wanxia Yang Miaoqi Li Beibei Zhou Yan Liu Kenan Liu Zhiyu Hu 

机构地区:[1]Mechanical and Electrical Engineering College,Gansu Agricultural University,Lanzhou,730070,China

出  处:《Computer Modeling in Engineering & Sciences》2021年第8期623-637,共15页工程与科学中的计算机建模(英文)

基  金:This research was supported by the National Natural Science Foundation of China(No.61862002).

摘  要:To address the difficulty of detecting low embedding rate and high-concealment CNV-QIM(complementary neighbor vertices-quantization index modulation)steganography in low bit-rate speech codec,the code-word correlation model based on a BiLSTM(bi-directional long short-term memory)neural network is built to obtain the correlation features of the LPC codewords in speech codec in this paper.Then,softmax is used to classify and effectively detect low embedding rate CNV-QIM steganography in VoIP streams.The experimental results show that for speech steganography of short samples with low embedding rate,the BiLSTM method in this paper has a superior detection accuracy than state-of-the-art methods of the RNN-SM(recurrent neural network-steganalysis model)and SS-QCCN(simplest strong quantization codeword correlation network).At an embedding rate of 20%and a duration of 3 s,the detection accuracy of BiLSTM method reaches 75.7%,which is higher than that of RNNSM by 11.7%.Furthermore,the average testing time of samples(100%embedding)is 0.3 s,which shows that the method can realize real-time steganography detection of VoIP streams.

关 键 词:CNV-QIM STEGANOGRAPHY BiLSTM STEGANALYSIS VOIP SPEECH 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象