Data Fusion about Serviceability Reliability Prediction for the Long-Span Bridge Girder Based on MBDLM and Gaussian Copula Technique  

在线阅读下载全文

作  者:Xueping Fan Guanghong Yang Zhipeng Shang Xiaoxiong Zhao Yuefei Liu 

机构地区:[1]School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou,730000,China

出  处:《Structural Durability & Health Monitoring》2021年第1期69-83,共15页结构耐久性与健康监测(英文)

基  金:This work was supported by Natural Science Foundation of Gansu Province of China(20JR10RA625,20JR10RA623);National Key Research and Development Project of China(Project No.2019YFC1511005);Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2020-55);National Natural Science Foundation of China(Grant No.51608243).

摘  要:This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of the long-span bridge girder.Firstly,multivariate Bayesian dynamic linear model(MBDLM)considering dynamic correlation among the multiple variables is provided to predict dynamic extreme deflections;secondly,with the proposed MBDLM,the dynamic correlation coefficients between any two performance functions can be predicted;finally,based on MBDLM and Gaussian copula technique,a new data fusion method is given to predict the serviceability reliability of the long-span bridge girder,and the monitoring extreme deflection data from an actual bridge is provided to illustrated the feasibility and application of the proposed method.

关 键 词:Dynamic extreme deflection data serviceability reliability prediction structural health monitoring multivariate Bayesian dynamic linear models Gaussian copula technique 

分 类 号:U21[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象