检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:I.G.Ameen N.A.Elkot M.A.Zaky A.S.Hendy E.H.Doha
机构地区:[1]Department of Mathematics,Faculty of Science,Al-Azhar University,Cairo,Egypt [2]Department of Mathematics,Faculty of Science,Cairo University,Giza,12613,Egypt [3]Department of Applied Mathematics,Physics Division,National Research Centre,Dokki,Cairo,12622,Egypt [4]Department of Computational Mathematics and Computer Science,Institute of Natural Sciences and Mathematics,Ural Federal University,Yekaterinburg,620002,Russia [5]Department of Mathematics,Faculty of Science,Benha University,Benha,13511,Egypt
出 处:《Computer Modeling in Engineering & Sciences》2021年第7期21-41,共21页工程与科学中的计算机建模(英文)
基 金:The Russian Foundation for Basic Research(RFBR)Grant No.19-01-00019.
摘 要:We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.
关 键 词:Spectral collocation method weakly singular integral equations two-point boundary value problems convergence analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90