A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations  

在线阅读下载全文

作  者:I.G.Ameen N.A.Elkot M.A.Zaky A.S.Hendy E.H.Doha 

机构地区:[1]Department of Mathematics,Faculty of Science,Al-Azhar University,Cairo,Egypt [2]Department of Mathematics,Faculty of Science,Cairo University,Giza,12613,Egypt [3]Department of Applied Mathematics,Physics Division,National Research Centre,Dokki,Cairo,12622,Egypt [4]Department of Computational Mathematics and Computer Science,Institute of Natural Sciences and Mathematics,Ural Federal University,Yekaterinburg,620002,Russia [5]Department of Mathematics,Faculty of Science,Benha University,Benha,13511,Egypt

出  处:《Computer Modeling in Engineering & Sciences》2021年第7期21-41,共21页工程与科学中的计算机建模(英文)

基  金:The Russian Foundation for Basic Research(RFBR)Grant No.19-01-00019.

摘  要:We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.

关 键 词:Spectral collocation method weakly singular integral equations two-point boundary value problems convergence analysis 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象