Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model  被引量:1

在线阅读下载全文

作  者:Mushtaq Ahmad Khan Ahmed BAltamimi Zawar Hussain Khan Khurram Shehzad Khattak Sahib Khan Asmat Ullah Murtaza Ali 

机构地区:[1]University of Engineering and Technology,Mardan,23200,Pakistan [2]University of Hail,Hail,Saudi Arabia [3]University of Engineering and Technology,Peshawar,25000,Pakistan [4]Politecnico di Torino,Torino,10129,Italy

出  处:《Computer Modeling in Engineering & Sciences》2021年第1期55-88,共34页工程与科学中的计算机建模(英文)

摘  要:This article introduces a fastmeshless algorithm for the numerical solution nonlinear partial differential equations(PDE)by Radial Basis Functions(RBFs)approximation connected with the Total Variation(TV)-basedminimization functional and to show its application to image denoising containing multiplicative noise.These capabilities used within the proposed algorithm have not only the quality of image denoising,edge preservation but also the property of minimization of staircase effect which results in blocky effects in the images.It is worth mentioning that the recommended method can be easily employed for nonlinear problems due to the lack of dependence on a mesh or integration procedure.The numerical investigations and corresponding examples prove the effectiveness of the recommended algorithm regarding the robustness and visual improvement as well as peak-signal-to-noise ratio(PSNR),signal-to-noise ratio(SNR),and structural similarity index(SSIM)corresponded to the current conventional TV-based schemes.

关 键 词:Denoised image multiplicative and speckle noises total variation(TV)filter Euler-Lagrange restoration equation multiquadric radial basis functions meshless and mesh-based schemes 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象