检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾德宇 梁泽逍 吴宗泽[1,2] ZENG Deyu;LIANG Zexiao;WU Zongze(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing,Guangdong University of Technology,Guangzhou 510006,China)
机构地区:[1]广东工业大学自动化学院,广州510006 [2]广东工业大学粤港澳离散制造智能化联合实验室,广州510006
出 处:《电子与信息学报》2022年第5期1602-1609,共8页Journal of Electronics & Information Technology
基 金:广东省重点领域研发计划(2021B0101200005);国家自然科学基金(62073088,U1911401);广东省基础与应用基础研究基金(2019A1515011606)。
摘 要:缺陷检测是智能制造系统的一个重要的环节。在采用传统机器学习算法进行缺陷分类的时候,通常会遇到数据噪声干扰,降低算法对缺陷类别的预测精度。尽管近几年提出了如鲁棒线性判别分析(RLDA)等强大的算法用于解决数据受稀疏噪声干扰的分类问题,但仍存在一些缺点限制其应用性能。该文提出一种新的基于线性判别分析的最优均值鲁棒线性分类模型(OMRLSA)。不同于以往应对噪声数据的分类方法忽略稀疏噪声具有的拉普拉斯分布特性对数据均值的影响,该文所提出的最优均值鲁棒线性分类模型会自动更新数据的最优均值,从而保证数据的统计特性不会受到噪声的干扰。此外,随后的损失函数中首次在鲁棒分类模型中引入了关于正则化和误差测量的联合L_(2,1)范数最小化和秩压缩的加权核范数最小化方法,从而提高算法的鲁棒性。在具有不同比例损坏的标准数据集上的实验结果说明了该文方法的优越性。Defect detection is an important part of intelligent manufacturing system.When traditional machine learning algorithms are used for defect classification,data noise interference is usually encountered,which reduces the algorithm’s prediction accuracy for defect classification.Although powerful algorithms such as Robust Linear Discriminant Analysis(RLDA)have been proposed in recent years to solve classification problems with data disturbed by sparse noise,there are still some drawbacks that limit its application performance.In this paper,a new Optimal Mean-Robust Linear Classification Analyis(OMRLSA)based on linear discriminant analysis is proposed.Different from the previous classification methods dealing with noisy data,ignoring the influence of the Laplace distribution characteristic of sparse noise on the data mean,the optimal mean robust linear classification model proposed in this paper will automatically update the optimal mean of the data.This ensures that the statistical characteristics of the data will not be disturbed by noise.Furthermore,a weighted kernel norm minimization method with joint L_(2,1) norm minimization and rank compression on regularization and error measurement is introduced for the first time in a robust classification model in the subsequent loss function.Thereby the robustness of the algorithm is improved.Experimental results on standard dataset with different ratio corruption illustrate the superiority of the proposed method.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49