检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈乔松 郭傲东 杜雨露 张怡文[2] 朱越 CHEN Qiaosong;GUO Aodong;DU Yulu;ZHANG Yiwen;ZHU Yue(School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;College of Information Engineering,Anhui Xinhua University,Hefei 230000,China;School of Information and Management Science,Henan Agricultural University,Zhengzhou 450046,China)
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065 [2]安徽新华学院信息工程学院,合肥230000 [3]河南农业大学信息与管理科学学院,郑州450046
出 处:《电子与信息学报》2022年第5期1723-1733,共11页Journal of Electronics & Information Technology
基 金:重庆邮电大学社科项目(K2021-114)。
摘 要:目前知识图谱研究主要面向信息检索、自然语言理解等领域,在推荐系统中融合知识图谱成为推荐领域学者广泛关注的问题。为了解决单一知识图谱忽略的丰富知识信息,该文对知识图谱进行多模态扩展,并提出一种融合知识图谱与图片特征的推荐模型(KG-I)。不同于其他基于知识图谱的推荐算法,该方法增加视觉嵌入、知识嵌入和结构嵌入去挖掘用户项目之间的隐式反馈信息。该模型利用深度游走模型(Deep Walk)捕获空间结构的方法和波纹网络模型(RippleNet)挖掘知识图谱的知识表达的思想,并且考虑图片对用户偏好的影响,有效地将信息进行融合,并在真实数据集上与其他模型实验比较,研究多种特征的影响,分析不同稀疏度数据下的表现。结果表明,融合知识图谱与图片特征的个性化推荐模型完全优于其他的对比算法并且有效缓解数据稀疏情况。At present,the study of knowledge graph focuses mainly on information retrieval,natural language understanding and other fields.Integrating knowledge graph with recommendation system has been concerned by scholars in the field.In order to mine the rich information ignored in knowledge graph,the knowledge graph is extended to multimodal and a recommendation model that incorporates Knowledge Graph with Image(KG-I)features is proposed.Different from other recommendation algorithms,visual embedding,knowledge embedding and structure embedding are combined to capture implicit feedback between user-items.The Deep Walk is used to capture the spatial structure and the ideal of RippleNet to retain the semantic features of knowledge graph,and the effect of images on preference is considered to integrate information.Compared with other models on the real data set,the influence of various features is studied,and the performance of different sparsity data is analyzed.The results show that the personalized recommendation model based on knowledge graph and image features outperforms other algorithms and the data sparsity can be alleviated.
分 类 号:TN911.73[电子电信—通信与信息系统] TP311[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219