Morpho-Physiological,Biochemical and Molecular Adaptation of Millets to Abiotic Stresses:A Review  被引量:2

在线阅读下载全文

作  者:Seerat Saleem Naveed Ul Mushtaq Wasifa Hafiz Shah Aadil Rasool Khalid Rehman Hakeem Reiaz Ul Rehman 

机构地区:[1]Department of Bioresources,School of Biological Sciences,University of Kashmir,Srinagar,190006,India [2]Department of Biological Sciences,Faculty of Science,King Abdulaziz University,Jeddah,21589,Saudi Arabia

出  处:《Phyton-International Journal of Experimental Botany》2021年第5期1363-1385,共23页国际实验植物学杂志(英文)

摘  要:Abiotic stresses such as drought,heat,cold,nutrient deficiency,excess salt and hazardous metals can hamper plantgrowth and development.Intensive agriculture of only a few major staple food crops that are sensitive and intolerant to environmental stresses has led to an agrarian crisis.On the other hand,nutritionally rich,gluten free and stress tolerant plants like millets are neglected and underutilized.Millets sustain about one-third of the world’s population and show exceptional tolerance to various abiotic and biotic stresses.Millets are C4 plants that are adapted to marginal and dry lands of arid and semi-arid regions,and survive low rainfall and poor soils.Abiotic stresses significantly affect plant growth which ultimately results in reduced crop yields.However,various adaptation mechanisms have evolved in millets to withstand different stresses.This review aims at exploring various of these morphophysiological,biochemical and molecular aspects of mechanisms in millets.Morphological adaptations include short life span,smallplant height and leaf area,dense root system,adjusted flowering time,increased root and decreased shoot lengths,high tillering,and leaf folding.A high accumulation of various osmoprotectants(proline,soluble sugars,proteins)improves hyperosmolarity and enhances the activity of antioxidant enzymes(e.g.,Ascorbate peroxidase,Superoxide dismutase,Catalase,Peroxidase)providing defense against oxidative damage.Physiologically,plants show low photosynthetic and stomatal conductance rates,and root respiration which help them to escape from water stress.Molecular adaptations include the upregulation of stress-related transcriptional factors,signalling genes,ion transporters,secondary metabolite pathways,receptor kinases,phytohormone biosynthesis and antioxidative enzymes.Lack of genetic resources hampers improvement of millets.However,several identified and characterized genes for stress tolerance can be exploited for further development of millet resilience.This will provide them with an extra cha

关 键 词:MILLETS adaptation abiotic stress OSMOPROTECTANTS ANTIOXIDANTS TRANSCRIPTOMICS 

分 类 号:S51[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象