Cyber Security-Protecting Personal Data  

在线阅读下载全文

作  者:Kevin McCormack Mary Smyth 

机构地区:[1]Central Statistics Office,Cork,Ireland

出  处:《Journal of Mathematics and System Science》2021年第2期18-29,共12页数学和系统科学(英文版)

摘  要:Many organizations have datasets which contain a high volume of personal data on individuals,e.g.,health data.Even without a name or address,persons can be identified based on the details(variables)on the dataset.This is an important issue for big data holders such as public sector organizations(e.g.,Public Health Organizations)and social media companies.This paper looks at how individuals can be identified from big data using a mathematical approach and how to apply this mathematical solution to prevent accidental disclosure of a person’s details.The mathematical concept is known as the“Identity Correlation Approach”(ICA)and demonstrates how an individual can be identified without a name or address using a unique set of characteristics(variables).Secondly,having identified the individual person,it shows how a solution can be put in place to prevent accidental disclosure of the personal details.Thirdly,how to store data such that accidental leaks of the datasets do not lead to the disclosure of the personal details to unauthorized users.

关 键 词:Data protection big data identity correlation approach cyber security data privacy. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象