检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马瑞群 张波[1] 员海玮[1] 韩景龙[1] MA Ruiqun;ZHANG Bo;YUAN Haiwei;HAN Jinglong(State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
机构地区:[1]南京航空航天大学机械结构力学及控制国家重点实验室,南京210016
出 处:《振动与冲击》2022年第10期215-221,共7页Journal of Vibration and Shock
基 金:国家自然科学基金(11472133)。
摘 要:提出一种改进的短记忆原理方法,即将传统的短记忆原理(short memory principle,SMP)对时间的截断替换为对二项式系数的截断,然后有限数量的二项式系数反复应用于不断倍增的步长,直至覆盖所有先前的时间点。该方法的目的是用小步长保证计算精度,同时用逐渐增大的步长减少计算量。采用带有分数阶阻尼的受迫振动、分数阶非线性Duffing方程和分数阶Lorenz混沌系统为算例说明了该方法的准确性和有效性。An improved method of the short memory principle was proposed,that is,the truncation of time by the traditional short memory principle(SMP)was replaced by the truncation of binomial coefficients,and then a finite number of binomial coefficients were repeatedly applied to the step size of multiplication until all previous time points were covered.The purpose of the method is to ensure the accuracy of calculation with small step length,and reduce the amount of calculation with gradually increasing step size.The forced vibration with fractional damping,the fractional nonlinear Duffing equationand fractional Lorenz chaos system were used as examples to illustrate the accuracy and effectiveness of the method.
关 键 词:分数阶计算 短记忆原理(SMP) 数值算法 振动
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26