BOUNDEDNESS AND EXPONENTIAL STABILIZATION IN A PARABOLIC-ELLIPTIC KELLER–SEGEL MODEL WITH SIGNAL-DEPENDENT MOTILITIES FOR LOCAL SENSING CHEMOTAXIS  被引量:1

在线阅读下载全文

作  者:Jie JIANG 江杰(Innovation Academy for Precision Measurement Science and Technology,CAS,Wuhan 430071,China)

机构地区:[1]Innovation Academy for Precision Measurement Science and Technology,CAS,Wuhan 430071,China

出  处:《Acta Mathematica Scientia》2022年第3期825-846,共22页数学物理学报(B辑英文版)

基  金:supported by Hubei Provincial Natural Science Foundation(2020CFB602).

摘  要:In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos-Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time.

关 键 词:Classical solution BOUNDEDNESS exponential stabilization DEGENERACY Keller-Segel models 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象