检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhenhang YANG 田景峰 杨镇杭;田景峰(Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education,North China Electric Power University,Baoding 071003,China;Zhejiang Society for Electric Power,Hangzhou 310014,China;Department of Mathematics and Physics,North China Electric Power University,Baoding 071003,China)
机构地区:[1]Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education,North China Electric Power University,Baoding 071003,China [2]Zhejiang Society for Electric Power,Hangzhou 310014,China [3]Department of Mathematics and Physics,North China Electric Power University,Baoding 071003,China
出 处:《Acta Mathematica Scientia》2022年第3期847-864,共18页数学物理学报(B辑英文版)
摘 要:Let K(r)be the complete elliptic integrals of the first kind for r∈(0,1)and f_(p)(x)=[(1−x)^(p)K(√x)].Using the recurrence method,we find the necessary and sufficient conditions for the functions−f′_(p),ln f_(p),−(ln f_(p))^((i))(i=1,2,3)to be absolutely monotonic on(0,1).As applications,we establish some new bounds for the ratios and the product of two complete integrals of the first kind,including the double inequalities exp[r^(2)(1−r^(2))/^(64)]/(1+r)^(1/4)<K(r)/K(√r)<exp[−r(1−r)/4],π/2 exp[θ0(1−2r^(2))]<π/2 K(r′)/K(r)<π/2(r′/r)^(p)exp[θ_(p)(1−2r^(2))],K^(2)(1/√2)≤K(r)K(r′)≤1/√2rr′K^(2)(1/√2)for r∈2(0,1)and p≥13/32,where r′=√1−r^(2) and θ_(p)=2Γ(3/4)^(4)/π^(2)−p.
关 键 词:Complete elliptic integrals of the first kind absolute monotonicity hypergeometric series recurrence method INEQUALITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.123.168