PARAMETER ESTIMATION OF PATH-DEPENDENT MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS  

在线阅读下载全文

作  者:Meiqi LIU Huijie QIAO 刘美琪;乔会杰(Department of Mathematics,Southeast University,Nanjing 211189,China;Department of Mathematics,University of Illinois at Urbana-Champaign,Urbana,IL 61801,USA)

机构地区:[1]Department of Mathematics,Southeast University,Nanjing 211189,China [2]Department of Mathematics,University of Illinois at Urbana-Champaign,Urbana,IL 61801,USA

出  处:《Acta Mathematica Scientia》2022年第3期876-886,共11页数学物理学报(B辑英文版)

基  金:supported by NSF of China(11001051,11371352,12071071);China Scholarship Council(201906095034).

摘  要:This work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters.First,we prove the existence and uniqueness of these equations under non-Lipschitz conditions.Second,we construct maximum likelihood estimators of these parameters and then discuss their strong consistency.Third,a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered.Finally,we estimate the errors between solutions of these equations and that of their numerical equations.

关 键 词:Path-dependent McKean-Vlasov stochastic differential equations maximum likelihood estimation the strong consistency numerical simulation 

分 类 号:O211.63[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象