Facial landmark disentangled network with variational autoencoder  

在线阅读下载全文

作  者:LIANG Sen ZHOU Zhi-ze GUO Yu-dong GAO Xuan ZHANG Ju-yong BAO Hu-jun 

机构地区:[1]CAD&CG State Labs,Zhejiang University,Hangzhou 310027,China [2]School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China.

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2022年第2期290-305,共16页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(61210007).

摘  要:Learning disentangled representation of data is a key problem in deep learning.Specifically,disentangling 2D facial landmarks into different factors(e.g.,identity and expression)is widely used in the applications of face reconstruction,face reenactment and talking head et al..However,due to the sparsity of landmarks and the lack of accurate labels for the factors,it is hard to learn the disentangled representation of landmarks.To address these problem,we propose a simple and effective model named FLD-VAE to disentangle arbitrary facial landmarks into identity and expression latent representations,which is based on a Variational Autoencoder framework.Besides,we propose three invariant loss functions in both latent and data levels to constrain the invariance of representations during training stage.Moreover,we implement an identity preservation loss to further enhance the representation ability of identity factor.To the best of our knowledge,this is the first work to end-to-end disentangle identity and expression factors simultaneously from one single facial landmark.

关 键 词:disentanglement representation deep learning facial landmarks variational autoencoder 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象