基于改进Mask R-CNN算法的工业零件缺陷检测技术  被引量:1

Industrial Parts Defect Detection Technology Based on Improved Mask R-CNN Algorithm

在线阅读下载全文

作  者:尚洁 吴观茂[1] SHANG Jie;WU Guanmao(College of Computer Science and Engineering,Anhui University of Science&Technology,Huainan 232001,China)

机构地区:[1]安徽理工大学计算机科学与工程学院,安徽淮南232001

出  处:《现代信息科技》2022年第3期137-140,共4页Modern Information Technology

基  金:安徽省自然科学基金面上项目(1908085MF189)。

摘  要:为了提升工业零件缺陷检测的精度和速度,在Mask R-CNN的基础上,引入了引导锚框的anchor生成方案提升检测精度;在此基础上对Mask R-CNN网络框架进行改进,去掉Mask分支,实现检测速度的优化。采用的数据集是DAGM工业缺陷数据集,并与先前的代表方法进行对比实验。实验表明,改进后的算法在检测精度方面对比原始算法提升了约1.94%,且速度也提升了1.2 frame/s,提升了工业零件缺陷检测的速度和精度。In order to improve the accuracy and speed of industrial parts defect detection,on the basis of Mask R-CNN,the anchor generation scheme of the guide anchor frame is introduced to improve the detection accuracy.on this basis,the Mask R-CNN network framework is improved and Mask branch is removed to realize the optimization of detection speed.The data set used is the DAGM industrial defect data set,and a comparison experiment with the previous representative method is carried out.Experiments show that the improved algorithm has improved by 1.94%in detection accuracy compared with the original algorithm,and the speed has also improved by 1.2 frame/s,the speed and accuracy of industrial parts defect detection are improved.

关 键 词:工业缺陷检测 Mask R-CNN 引导锚框 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象