检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马峰 倪明放 Ma Feng;Ni Mingfang(High-Tech Institute of Xi'an,Xi'an 710025;Zhuhai College of Science and Technology,Zhuhai 519041)
机构地区:[1]火箭军工程大学作战保障学院,西安710025 [2]珠海科技学院,珠海519041
出 处:《高等学校计算数学学报》2022年第1期36-49,共14页Numerical Mathematics A Journal of Chinese Universities
基 金:Supported by the NSFC Grant 12171481;NSF of Shaanxi Province grant 2020JQ-485.
摘 要:Recently,an indefinite linearized augmented Lagrangian method(IL-ALM)was proposed for the convex programming problems with linear constraints.The IL-ALM differs from the linearized augmented Lagrangian method in that the augmented Lagrangian is linearized by adding an indefinite quadratic proximal term.But,it preserves the algorithmic feature of the linearized ALM and usually has the advantage to improve the performance.The IL-ALM is proved to be convergent from contraction perspective,but its convergence rate is still missing.This is mainly because that the indefinite setting destroys the structures when we directly employ the contraction frameworks.In this paper,we derive the convergence rate for this algorithm by using a different analysis.We prove that a worst-case O(1/t)convergence rate is still hold for this algorithm,where t is the number of iterations.Additionally we show that the customized proximal point algorithm can employ larger step sizes by proving its equivalence to the linearized ALM.
关 键 词:Convex programming augmented Lagrangian method proximal point algorithm convergence analysis indefinite regularization
分 类 号:O221.2[理学—运筹学与控制论] O224[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51