机构地区:[1]天津工业大学纺织科学与工程学院,分离膜与膜过程国家重点实验室,天津300387
出 处:《材料导报》2022年第11期19-32,共14页Materials Reports
基 金:国家自然科学基金(51673148,51678411);中国博士后基金(2019M651047)。
摘 要:随着化石能源消耗及电动汽车(EVs)、便携式设备和电网存储的快速发展,传统锂离子电池已经不能满足人们对电池储能日益增长的需要,寻找下一代绿色储能系统也变得十分迫切。近年来,高能量密度低成本的锂硫电池(LSBs)技术得到了研究者们的极大关注。从理论上讲,正极的面积容量直接由硫含量和面载量共同决定。因此,为了提高LSBs的面积容量和能量密度,开发具有高性能的高载硫锂硫电池(HLSBs)势在必行。然而,目前LSBs实际能达到的能量密度远低于其理论能量密度。其主要原因可以归结于多硫化物(LiPSs)的“穿梭效应”、硫和二硫化锂/硫化锂(Li_(2)S_(2)/Li_(2)S)的导电性差以及锂枝晶生长等问题。更重要的是,当载硫量增加到实际应用水平时,上述问题变得更加严重。为解决这些问题,研究者们开发了不同策略来抑制LiPSs的“穿梭效应”,如物理包覆、静电排斥与极性吸附等。其中由于一些材料具有极性作用、表面缺陷等优点,引起了研究者们的广泛关注,因此研究者们相继开发了一维、二维以及三维等不同结构的催化材料来加快氧化还原反应,使得电池的循环寿命得以延长和库伦效率得到提高。尽管在提升性能方面已经取得很多进步,但这项技术的商业化前景取决于能否将其制成耐用且安全的电池系统。因此研究小组开发了新型功能性电解液添加剂、高性能隔膜和中间层、以及微/纳米结构的锂负极或锂复合负极稳定金属锂,从而提高电池安全性。从商业化的角度来看,LSBs的面积容量和能量密度需分别达到5 mAh·cm^(-2)和500 Wh·kg^(-1),才能满足商业化EVs的需求。因此在提高其性能的同时,也需不断提高硫的负载量,以求达到更高的能量密度。本文通过对近年来HLSBs的研究成果进行整理和总结,从三个方面综述了高性能的HLSBs的基础研究和发展策略,具体包括�With the consumption of fossil fuels and the rapid development of electric vehicles(EVs),portable devices and grid storage,traditional lithiumion batteries are unable to satisfy the ever-increasing demand of society.It is very important for researchers to explore for replaceable green new energy sources.In recent years,high-energy density and low-cost lithium sulfur batteries(LSBs)technology has received great attention.In theory,the area capacity of the cell cathode is directly determined by the sulfur content and the sulfur loading.Therefore,it is imperative to deve-lop high-performance lithium sulfur batteries(HLSBs)with high loading for improving the area capacity and energy density.However,the actual energy density of LSBs is far lower than its theoretical value.The main reasons can be summarized in the‘Shuttle effect’of lithium polysulfides(LiPSs),the poor conductivity of sulfur and lithium sulfide(Li_(2)S_(2)/Li_(2)S)and uncontrollable growth of lithium dendrites.More importantly,the above-mentioned problems will become more serious when the sulfur loading increases to the practical application level.In response to these problems,researchers have designed various strategies to suppress the“shuttle effect”of LiPSs,such as physical coating,electrostatic repulsion and polar adsorption.Moreover,some nano-catalytic materials have attracted wide attention from researchers due to the polar effect,surface defects and other advantages.Therefore,researchers have successively developed various catalytic materials with different structures such as one-dimensional,two-dimensional and three-dimensional to accelerate the redox reaction,which has effectively improved the cycle life and coulombic efficiency of LSBs.Although researchers have made great contributions in terms of cycle life,the commercialization prospects of the technology depend on whether it can be made into durable and safe battery system.Therefore,the researching teams has developed new functional electrolyte additives,high-performance separators
关 键 词:高载硫锂硫电池 穿梭效应 吸附策略 催化作用 锂枝晶
分 类 号:TM919[电气工程—电力电子与电力传动] O646[理学—物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...