检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘玉利[1] 王克朝[1] 刘琳[1] LIU Yuli;WANG Kechao;LIU Lin(Harbin University,Harbin 150086,China)
机构地区:[1]哈尔滨学院,哈尔滨150086
出 处:《激光杂志》2022年第5期156-160,共5页Laser Journal
基 金:黑龙江省自然科学基金项目(No.LH2019F046)。
摘 要:利用当前方法对多光谱模糊图像降噪时,未对多光谱模糊图像进行增强处理,存在图像视觉效果差、主观分数低等问题。为此,提出基于机器学习的多光谱模糊图像降噪方法。首先,利用均值滤波模板增强多光谱模糊图像色彩,同时利用高斯模板增强图像细节,将两者叠加,保证图像不受失真和光晕现象等影响,保证图像以及边界的清晰度;然后,利用核主成分分析法构建图像去噪模型,将图像坐标全部投射到特征空间中;最后,采用机器学习去噪特征空间中的近似噪点,实现多光谱模糊图像降噪。实验结果表明,所提方法的图像视觉效果较好,且主观得分较高。When using the current method to denoise the multi spectral blurred image,it does not enhance the multi spectral blurred image,which leads to the problems of poor visual effect and low subjective score. Therefore,a multispectral image denoising method based on machine learning is proposed. Firstly,the mean filter template is used to enhance the color of the multi spectral blurred image,while the Gaussian template is used to enhance the image details,and the two are superimposed to ensure that the image is not affected by the distortion and halo phenomenon,and to ensure the clarity of the image and the boundary;Then,the image denoising model is constructed by kernel principal component analysis,and all the image coordinates are projected into the feature space;Finally,machine learning is used to denoise the approximate noise in the feature space to realize the denoising of multispectral blurred image. Experimental results show that the visual effect of the proposed method is better,and the subjective score is higher.
关 键 词:机器学习 核主成分分析 图像降噪 图像增强 核函数
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42