检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wuqing Wu Dongliang Xu Yue Zhao Xinhai Liu
机构地区:[1]Business School,Renmin University of China,Beijing,China [2]Du Xiaoman Financial,Beijing,China [3]Centre of Financial Intelligence Research,Peking University,Beijing,China
出 处:《Economic and Political Studies》2020年第4期482-499,共18页经济与政治研究(英文版)
基 金:The study is supported by the National Natural Science Foundation(China)[Nos.71631004(Key Project)and 71871216];the Social Science Foundation of Beijing[No.17GLB022];the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China[No.16XNB025].
摘 要:The peer-to-peer lending industry has experienced recent turmoil,posing risks to fintech companies and banks.Based on a random sample of 33,669 borrowers who had downloaded peer-to-peer lending platforms prior to submitting loan applications to a wellknown fintech company,Du Xiaoman Financial(formerly Baidu Finance),this article evaluates the predictive power of borrowers’internet behaviours on credit default risk.After controlling for borrowers’basic characteristics that are widely used in academic research and enterprise practices,the coefficients of key factors selected from 3,100 variables are economically and statistically significant.The average Kolmogorov-Smirnov value of the prediction model calculated using the hold-out method is approximately 37.09%.The results remain robust in several additional analyses.This study indicates the importance of non-credit information,particularly borrowers’internet behaviours,in supplementing borrowers’credit records for both fintech companies and banks.
关 键 词:Internet behaviours credit default P2P lending
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145