检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马天[1] 赵会敏 杨嫣 杨嘉怡 MA Tian;ZHAO Huimin;YANG Yan;YANG Jiayi(College of Computer Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
机构地区:[1]西安科技大学计算机科学与技术学院,陕西西安710054
出 处:《西安科技大学学报》2022年第3期580-588,共9页Journal of Xi’an University of Science and Technology
基 金:陕西省自然科学基础研究计划项目(2022JM-508);国家自然科学基金项目(62101432)。
摘 要:神经网络模型作为一种数字资产,其版权保护日益受重视,针对目前神经网络域水印信息单一、不直观的问题,设计一种水印信息内容优化的方法,在训练神经网络时嵌入水印,采用正则化的方法防止训练神经网络时参数过度拟合,并进行了水印信息的加密研究。通过分析图像域和神经网络域中有效水印算法的需求,将简单的二进制串信息优化为有视觉意义的二值图像与灰度图像,对于不同水印形式进行了分析对比,并在嵌入前对水印信息进行了典型的加密预处理分析,包括Arnold变换、按位异或加密以及行列像素置乱加密。结果表明:该方法可以在不影响原始任务性能的情况下有效地嵌入水印,并且提取的信息质量更好,采用行列像素置乱的二值图像作为水印嵌入,对神经网络性能的影响最小。As a kind of digital asset,the copyright protection of neural network model is paid more and more attention.In order to solve the problem of simple and unintuitive watermarking information in neural network domain,a method of content optimization of watermarking information was proposed.The watermark was embedded in training neural network,the regularization method was used to prevent over-fitting of parameters in the training process,and the encryption of watermark information was studied.The simple binary string information was optimized into visual binary image and gray image by exploring the requirements of effective watermarking algorithm in image domain and neural network domain,the different watermark forms were compared,and typical encryption pre-processing analyses were made of the watermark information before embedding,including Arnold,per-bit dissimilarity encryption and row column pixel scrambling.The experimental results indicate that the method in this paper can effectively embed the watermark without affecting the performance of the original task,and the quality of the extracted information is better.The application of the binary image with row column pixel scrambling in the watermark-embedding will have the least impact on the performance of the neural network.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.8.36