检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑爽[1] 梁云浩 武俊峰[1] 乔壮 刘付刚[1] ZHENG Shuang;LIANG Yunhao;WU Junfeng;QIAO Zhuang;LIU Fugang(Heilongjiang University of Science and Technology,Harbin 150022,China)
出 处:《中国矿业》2022年第6期79-85,共7页China Mining Magazine
基 金:黑龙江省省属高校基本科研业务费项目资助(编号:2020-KYYWF-0702);黑龙江省自然科学基金项目资助(编号:LH2021F052)。
摘 要:现有煤矸石分选方法主要依据人工设计特征对煤矸石进行识别,但特征提取过程复杂,准确率也较低。随着人工智能技术的快速发展,智能选矸成为解决煤矸石分拣问题的重要研究方向。为提高煤与煤矸石分类准确率,本文提出了一种基于AlexNet网络和风格迁移技术改进的煤矸石分拣方法。选用3×3的卷积核代替原AlexNet网络前几层中较大的卷积核,利用BN层代替LRN层和Dropout,并采用风格迁移数据增强法提高煤与煤矸石数据集的多样性。研究结果表明,与原始的AlexNet网络相比,该方法的准确率提高了1.8%,损失率下降了2.0%。此方法不仅能够满足煤与煤矸石实时检测的要求,而且具有更高的识别精度,能有效应用于煤矸石识别。The existing coal gangue separation methods mainly identify coal gangue based on manual design features,but the feature extraction process is complex and the accuracy is low.With the rapid development of artificial intelligence technology,intelligent gangue separation has become an important research direction to solve the problem of coal gangue sorting.In order to improve the classification accuracy of coal and coal gangue,an improved coal gangue sorting method based on AlexNet network and style migration technology is proposed in this paper.Selecting 3×3 instead of the larger convolution kernel in the first few layers of the original AlexNet network,and BN layer is used to replace LRN and Dropout,and using the style migration data enhancement method to improve the diversity of coal and coal gangue data sets.The results show that compared with the original AlexNet network,the accuracy of this method is improved by 1.8%and the loss rate is reduced by 2.0%.This method can not only meet the requirements of real-time detection of coal and coal gangue,but also has higher recognition accuracy,and can be effectively applied to coal gangue recognition.
分 类 号:TD94[矿业工程—选矿] TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249