检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Etienne Ahusborde Mejdi Azaiez Ralf Gruber
机构地区:[1]Laboratoire de Mathématiques et de leurs Applications de Pau,CNRS/Univ Pau&Pays Adour,Fédération IPRA,UMR5142,64000,Pau,France [2]Bordeaux INP,I2M(UMR CNRS 5295),33607 Pessac,France [3]Chemin du Daillard 11,1071 Chexbres/VD,Switzerland
出 处:《Journal of Mathematical Study》2018年第1期1-14,共14页数学研究(英文)
摘 要:It iswell known that the approximation of eigenvalues and associated eigenfunctions of a linear operator under constraint is a difficult problem.One of the difficulties is to propose methods of approximation which satisfy in a stable and accurate way the eigenvalues equations,the constraint one and the boundary conditions.Using any non-stable method leads to the presence of non-physical eigenvalues:a multiple zero one called spurious modes and non-zero one called pollution modes.One way to eliminate these two families is to favor the constraint equations by satisfying it exactly and to verify the equations of the eigenvalues equations in weak ways.To illustrate our contribution in this field we consider in this paper the case of Stokes operator.We describe several methods that produce the correct number of eigenvalues.We numerically prove how these methods are adequate to correctly solve the 2D Stokes eigenvalue problem.
关 键 词:Stokes eigenvalues problem spectral method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222