一种基于有向感知区域调整的强栅栏构建算法  

Strong Barrier Construction Algorithm Based on Adjustment of Directional Sensing Area

在线阅读下载全文

作  者:王方红[1] 范兴刚 杨静静[2] 周杰 王德恩 WANG Fang-hong;FAN Xing-gang;YANG Jing-jing;ZHOU Jie;WANG De-en(Zhijiang College of Zhejiang University of Technology,Hangzhou 310023,China;College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)

机构地区:[1]浙江工业大学之江学院,杭州310023 [2]浙江工业大学计算机科学与技术学院,杭州310023

出  处:《计算机科学》2022年第S01期612-618,共7页Computer Science

基  金:浙江省自然科学基金(LY20F020024)。

摘  要:K-栅栏覆盖是有向传感器网络的研究热点之一。传统栅栏构建算法消需要耗大量节点能量,降低了网络寿命。文中创新性地利用有向节点感知区域的可调特性,不消耗节点能量,可高效构建栅栏。首先,创建有向可调感知模型,揭示感知区域的调整规律,使相距较远的两个节点不靠移动形成连续感知区域。接着,提出一种基于感知区域可调特性的有向强栅栏构建方法,优化调整感知区域,分布式选择最优节点,构建有向强栅栏。仿真结果证明,相比依赖于节点运动的传统栅栏构建算法,所提栅栏构建方法能够用更少的资源构建栅栏,有效延长网络寿命,具有重要的理论与实际意义。K-barrier coverage is one of the hotspots in directional sensor networks.Traditional barrier construction algorithm consumes a lot of node energy and reduces the network lifetime.This paper innovatively exploits the adjustable characteristics of the direcitonal sensing area to efficiently construct directional barrier without consuming node energy.It firstly creates the adjustment of directional sensing area to reveal the regulation of sensing region adjustment.So that two nodes far from each other form continuous sensing regions without locomotivity.Then,it proposes a barrier construction scheme based on the adjustment of sensing area,optimizes and adjusts the directional sensing area,and selects optimal node to form barrier in distributed manner.Simulation results show that,compared with other methods using actuating capability,the proposed method could form barrier with less network resources,and achieve longer service lifetime.This research has important theoretical and practical significance.

关 键 词:有向栅栏覆盖 感知区域调整 调节环 网络寿命 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象