检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨波 李远彪 YANG Bo;LI Yuan-biao(Data Science Research Center,Kunming University of Science and Technology,Kunming 650500,China;Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学数据科学研究中心,昆明650500 [2]昆明理工大学理学院,昆明650500
出 处:《计算机科学》2022年第S01期680-685,807,共7页Computer Science
基 金:国家自然科学基金(11947041)。
摘 要:近年来,越来越多的高校开始开设数据科学与大数据技术专业,作为一个多学科交叉的新兴热门宽口径专业,其课程体系仍在进一步完善中。文中运用复杂网络方法对从互联网上收集到的106所高校的课程数据进行了分析和可视化,分别构建了课程共现网络和开设院校关系网络。对于耦合度较高的课程共现网络,提出了一种基于边权的壳层分解算法,对课程重要性进行逐层分析,并将所得结果与词频统计和由Apriori算法获取的频繁项集结果进行了对比分析。考虑到该专业可授予理学或工学学位,又将数据集划分为理学和工学两部分进行了分析和可视化。本研究的开展能够给即将开设或者已经开设数据科学与大数据技术专业的院校提供一定的参考,同时也为高耦合网络的分析提供一种有效的算法。In recent years,more and more universities have begun to offer majors in data science and big data technology.As an emerging and popular multi-disciplinary major with wide caliber,its curriculum system is still being furthered improved.In this paper,we use complex network methods to analyze and visualize the course data set of 106 universities collected from the Internet.The course co-occurrence network and college relationship network are constructed respectively.For the highly coupled course co-occurrence network,a shell decomposition algorithm based on edge weights is proposed.The results are compared with the word frequency statistics and the frequent items obtained by the Apriori algorithm.Considering that this speciality can award a degree in science or engineering,the data set is divided into two sections science and engineering to analyze and visualize.This research can provide a certain reference to universities which are establishing or have established data science and big data technology speciality,and also provide an effective algorithm for the analysis of highly coupled networks.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229