检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔚宏轩 蔡猛 于祥祯 王树文 WEI Hongxuan;CAI Meng;YU Xiangzhen;WANG Shuwen(Shanghai Radio Equipment Research Institute,,Shanghai 201109,China)
出 处:《制导与引信》2022年第1期5-11,共7页Guidance & Fuze
摘 要:针对强地杂波环境下合成孔径雷达(syntheticapertureradar,SAR)图像中的车辆目标鉴别问题,提出了一种基于变化检测量阈值分割和二维像素间隙度特征的车辆目标鉴别方法,利用像素散射强度变化等特征对SAR图像中的车辆目标进行目标鉴别可信度排序,并采用公开的车辆目标SAR图像数据集开展了仿真实验验证。仿真结果表明:利用二维像素间隙度特征向量计算得到的车辆目标鉴别可信度有3%~8%的提升。证明了所提方法的有效性。Aiming at the identification problem of vehicle targets in synthetic aperture radar(SAR)image with strong ground clutter,an identification method of vehicle targets based on changeable detection threshold segmentation and two-dimensional pixel gap feature is proposed.The identification reliability of potential vehicle targets in SAR image is sorted by using the pixel scattering intensity variation,while simulation experiments are carried out based on public vehicle targets SAR image datasets,which proved that the identification reliability of vehicle targets counting by two-dimensional pixel gap features can be improved by 3%-8%.The effectiveness of the proposed method is proved.
关 键 词:变化检测量 二维像素间隙度特征 车辆目标鉴别 地杂波
分 类 号:TN959.21[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249