Traffic load predictions for cellular networks:A comparative study based on deep learning  

在线阅读下载全文

作  者:Miao Zhang Chunshan Liu Lou Zhao 

机构地区:[1]School of Communication Engineering,Hangzhou Dianzi University,Hangzhou,China

出  处:《Data Science and Informetrics》2022年第2期50-63,共14页数据科学与信息计量学(英文)

基  金:supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LZ22F010001。

摘  要:Prediction of the traffic load of cellular networks is important for network planning, load balancing, and operational optimization. In this paper, a comparative study of cellular traffic load prediction models based on deep learning is performed and a prediction method built on a multi-channel Gated Recurrent Unit(GRU) model is proposed. The proposed method uses multiple channels to extract the daily and weekly variation feature as well as the variation feature of the peak period of the BS load and can be used to provide 24-hour ahead predictions.Experimental results obtained from real dataset show that the proposed multi-channel model can effectively capture the temporal-variations of BS load and reduce the prediction error.Compared with conventional prediction algorithms such as Convolutional Neural Network(CNN), Long Short-Term Memory network, GRU and combination of CNN and GRU(CNN-GRU),the proposed model can achieve better prediction accuracies.

关 键 词:Traffic prediction 24-hour ahead prediction GRU 

分 类 号:TN929.5[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象