检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Miao Zhang Chunshan Liu Lou Zhao
机构地区:[1]School of Communication Engineering,Hangzhou Dianzi University,Hangzhou,China
出 处:《Data Science and Informetrics》2022年第2期50-63,共14页数据科学与信息计量学(英文)
基 金:supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LZ22F010001。
摘 要:Prediction of the traffic load of cellular networks is important for network planning, load balancing, and operational optimization. In this paper, a comparative study of cellular traffic load prediction models based on deep learning is performed and a prediction method built on a multi-channel Gated Recurrent Unit(GRU) model is proposed. The proposed method uses multiple channels to extract the daily and weekly variation feature as well as the variation feature of the peak period of the BS load and can be used to provide 24-hour ahead predictions.Experimental results obtained from real dataset show that the proposed multi-channel model can effectively capture the temporal-variations of BS load and reduce the prediction error.Compared with conventional prediction algorithms such as Convolutional Neural Network(CNN), Long Short-Term Memory network, GRU and combination of CNN and GRU(CNN-GRU),the proposed model can achieve better prediction accuracies.
关 键 词:Traffic prediction 24-hour ahead prediction GRU
分 类 号:TN929.5[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15