检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易茜[1] 李聪波[1] 潘建 张友 YI Qian;LI Congbo;PAN Jian;ZHANG You(State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing, 400044)
机构地区:[1]重庆大学机械传动国家重点实验室,重庆400044
出 处:《中国机械工程》2022年第11期1269-1277,共9页China Mechanical Engineering
基 金:国家自然科学基金(52005062,51975075);重庆市技术创新与应用示范专项(cstc2018jszx-cyzdX0183)。
摘 要:针对薄板类零件加工过程中加工变形导致加工精度低的问题,利用有限元法和高斯过程回归算法建立了加工变形预测模型,综合考虑机床运动误差与工件加工变形,对薄板件加工精度可靠性进行分析,建立了以加工效率和平均加工变形为目标、加工精度可靠度为约束的铣削加工工艺参数优化设计模型,并利用多目标优化算法进行求解,确定了协调加工效率和加工变形最优的工艺参数组合。案例研究结果表明,经优化设计后最低加工精度可靠度达到98.21%,平均加工变形减小21.14%,加工效率提高了4.18%,为薄板类零件铣削加工工艺参数选择提供了一种可行的方法。To address the problems of low machining accuracy caused by cutting deformations during the machining processes of the thin-plate parts,a machining deformation prediction model was established by using the finite element method and Gaussian process regression algorithm.Then,the workpiece processing deformations and machine tool motion errors were considered comprehensively to analyze the reliability of the thin-plate machining accuracy.A milling process parameter optimization design model was established with machining efficiency and average machining deformation as the goal,and the machining accuracy reliability as the constraint.The multi-objective optimization algorithm was used to solve the model,determining the optimal combination of processing parameters for coordinated processing efficiency and processing deformations.The case study indicates that after the optimized design,the minimum machining accuracy reliability reaches 98.21%,the average machining deformations are reduced by 21.14%,and the machining efficiency is increased by 4.18%.A feasible method is provided for the selection of milling process parameters for thin plate parts.
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46