检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋中山[1,2] 汪进 郑禄 帖军[1,2] 朱祖桐 Song Zhongshan;Wang Jin;Zheng Lu;Tie Jun;Zhu Zutong(School of Computer Science,South-Central University for Nationalities,Wuhan,430074,China;Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises,Wuhan,430074,China)
机构地区:[1]中南民族大学计算机科学学院,武汉市430074 [2]湖北省制造企业智能管理工程技术研究中心,武汉市430074
出 处:《中国农机化学报》2022年第6期150-158,共9页Journal of Chinese Agricultural Mechanization
基 金:湖北省技术创新专项重大项目(2019ABA101);武汉市科技计划应用基础前沿项目(2020020601012267);中国科学院—国家民委农业信息技术研究与开发联合实验室招标课题(PJW060012003)。
摘 要:为研究在自然场景下柑橘叶片病害检测和识别技术,提出一种基于二值化的Faster R-CNN(Binary Faster R-CNN)区域检测神经网络模型。改进模型将原始的Faster R-CNN全连接层神经网络转变为二进制全卷积神经网络。试验结果表明,该模型对柑橘的黑斑病、溃疡病、黄龙病、疮痂病、健康叶片的平均准确率分别为87.2%、87.6%、89.8%、86.4%和86.6%,总平均准确率为87.5%;模型识别时间相较于Faster R-CNN网络提高0.53 s,每幅图像的检测时间为0.31 s,模型大小缩小到15.3 MB,FLOPs为2.58×10^(9);同时在保证模型检测有效性的情况下可快速收敛。该方法对复杂自然环境下的柑橘叶片病害检测具有较好的识别速度和鲁棒性,对柑橘类疾病预防有重要的研究意义。A binarization-based Faster R-CNN(Binary Faster R-CNN) region detection neural network model is proposed for the study of citrus leaf disease detection and recognition techniques in natural scenarios.The improved model transforms the original Faster R-CNN fully connected layer neural network into a binary,fully convolutional neural network.The experimental results showed that the average recognition rate of the model was 87.2%,87.6%,89.8%,86.4%,and 86.6% for black spot,ulcer,citrus_greening,scab,and healthy leaves of citrus,respectively,and the overall average recognition rate of the model was 87.5%.The recognition speed of the model was improved by 0.53 s compared with the Faster R-CNN network,and the detection time up to 0.31 s per image.The model size was reduced to 15.3 MB,and the floating-point computational power was 2.58×10~9,while the model converged quickly,ensuring the effectiveness of detection and robustness of the model.The method has good recognition speed and robustness for citrus leaf disease detection in complex natural environments and is of great research significance for citrus disease prevention.
关 键 词:Faster R-CNN Binary Faster R-CNN 二进制网络 目标检测 柑橘 病虫害
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222