检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王建森 任玉晓[2] 陈磊[2] 严冬 杨传根 许新骥[2] WANG Jiansen;REN Yuxiao;CHEN Lei;YAN Dong;YANG Chuangen;XU Xinji(School of Qilu Transportation,Shandong University,Jinan,Shandong 250061,China;Geotechnical and Structural Engineering Research Center,Shandong University,Jinan,Shandong 250061,China;Huaneng Tibet Hydropower Safety Engineering Technology Research Center,Linzhi,Tibet 860000,China)
机构地区:[1]山东大学齐鲁交通学院,山东济南250061 [2]山东大学岩土与结构工程研究中心,山东济南250061 [3]华能西藏水电安全工程技术研究中心,西藏林芝860000
出 处:《石油地球物理勘探》2022年第3期624-637,I0005,共15页Oil Geophysical Prospecting
基 金:国家自然科学基金重点项目“TBM施工隧洞不良地质实时超前探测与掘进智能决策理论研究”(51739007);NSFC—山东联合基金项目“海底隧道施工和运营灾害发生机理、预报预警与安全控制理论与技术”(U1806226);山东省自然科学基金博士基金项目“TBM破岩震源不良地质超前探测高精度成像理论研究”(ZR2019BEE048);华能集团科技项目“深埋长隧洞智能TBM掘进关键技术研究”(HNKJ19-H15);中国国家铁路集团有限公司科技研究开发计划课题(P2019G038)联合资助。
摘 要:最小二乘偏移(Least Squares Migration, LSM)是一种备受关注的高分辨率成像方法,它的成功应用取决于正演—偏移算子对的伴随特性。通常,正演—偏移算子对可以根据Born近似理论或逆时偏移(Reverse Time Migration, RTM)过程构建,也可以基于两者同时构建。波动方程离散化和数值实现方法会影响其伴随特性,通过点积测试可以对伴随特性进行数值检验。然而,不同伴随算子之间的关系和成像结果差异目前尚不清楚。为此,从二阶声波方程的矩阵表达式入手,推导出了三组精确伴随算子对。其中两组分别基于Born近似理论和RTM过程构建,第三组是利用声波方程的自伴随离散化形式构建,分别将它们命名为Born-AdjBorn、DeRTM-RTM和自伴随Born-RTM算子对。对应的LSM过程分别称为LSBM、LSRTM和自伴随LSBRTM。通过数学推导和矩阵分析,得出了基于三组伴随算子对的成像结果之间的一系列定量关系,并应用数值算例进行了验证。Least-square migration(LSM)is frequently mentioned in high-resolution imaging,whose successful application depends on the adjoint characteristic of forward-migration operator pairs.Normally,a forward-migration operator pair can be designed according to the Born approximation theory or/and reverse time migration(RTM)process.Its adjoint characteristic can be affected by the discretization and numerical implementation methods of wave equations,and the dot-product test can be used for the numerical test of this characteristic.However,the relations and the differences between the imaging results of different adjoint operator pairs are not clear.Considering this,three pairs of exact adjoint operators are derived by starting from the matrix expression of the secondorder acoustic wave equation,two of which are constructed only on the basis of the Born approximation theory and the RTM process separately,and the third one is based on the self-adjoint discretization of the acoustic wave equation.They are named as Born-AdjBorn,DeRTM-RTM,and selfadjoint Born-RTM operator pairs,respectively,and the corresponding LSM processes are called LSBM,LSRTM,and self-adjoint LSBRTM,respectively.The matrix analysis and mathematical derivation indicate that a series of quantitative relations exist between the imaging results using the three operator pairs,and all these quantitative relations are validated by numerical experiments.
关 键 词:声波LSM 波动方程离散化 精确伴随算子对 定量对比
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.38.31