相机抖动场景中数据驱动的背景图像更新算法  被引量:3

Data-driven background representation algorithm in camera jitter scene

在线阅读下载全文

作  者:孙国庆 侯忠生 SUN Guo-qing;HOU Zhong-sheng(College of Automation,Qingdao University,Qingdao Shandong 266071,China)

机构地区:[1]青岛大学自动化学院,山东青岛266071

出  处:《控制理论与应用》2022年第5期933-940,共8页Control Theory & Applications

基  金:国家自然科学基金项目(61833001)资助。

摘  要:视频序列中的运动目标检测是计算机视觉领域的重要研究课题.背景减除是运动目标检测的有效方法,但相机抖动会对背景提取带来极大干扰,从而可能造成传统基于模型的图像处理方法模型失真.本文提出了相机抖动场景下前景图像提取的数据驱动背景图像更新控制算法.首先利用Harris特征检测进行背景补偿以消除抖动干扰.然后利用无模型自适应控制方法,建立单入单出控制系统来表示背景图像并进行实时更新.最后运用背景减除法提取运动目标前景图像.本文方法与传统基于模型方法进行了不同视频序列的对比仿真.实验结果表明,本文方法可以有效处理相机抖动场景下的运动目标检测问题,目标前景图像分离效果更加接近真实场景.Moving object detection in video sequences is an important topic in the field of computer vision.Background subtraction is an effective method for moving object detection.Camera jitter will bring great interference to the extraction of background image,which could make the traditional model-based methods more likely image distortion.In this paper,a data-driven background representation algorithm in camera jitter is proposed.First,the Harris feature detection is used for background compensation to eliminate jitter interference.Then,the model free adaptive control method is used to establish a single input single output control system to represent and update the background image in real time.At last,the foreground image of moving object is extracted by background subtraction.The proposed method is compared with the traditional model-based methods in different video sequences.Experimental results show that the proposed method can effectively solve the problem of moving object detection in camera jitter scene and the separated foreground is closer to the ground truth.

关 键 词:运动目标检测 特征检测 数据驱动 无模型自适应控制 背景图像表达 背景减除法 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象