基于神经网络的多源融合室内定位算法  

Multi-source Fusion Indoor Positioning Algorithm Based on Neural Network

在线阅读下载全文

作  者:陈娟 单志龙[1,2] 邓嘉豪 曾衍华 CHEN Juan;SHAN Zhi-Long;DENG Jia-Hao;ZENG Yan-Hua(School of Computer Science,South China Normal University,Guangzhou 510631,China;School of Distance Education,South China Normal University,Guangzhou 510631,China)

机构地区:[1]华南师范大学计算机学院,广州510631 [2]华南师范大学网络教育学院,广州510631

出  处:《计算机系统应用》2022年第6期224-230,共7页Computer Systems & Applications

基  金:广州市科技计划(201904010195)。

摘  要:针对WiFi信号在室内复杂环境下不稳定以及建筑物对地磁场的扭曲作用造成单一定位源定位精度不高的问题,本文采用多源信息融合定位技术,有效利用WiFi和地磁场的指纹数据来进行定位,提出了一种改进的自适应差分进化算法来优化BP神经网络(improved differential evolution BP, IDEBP).该方法通过改进差分进化算法的变异、交叉和选择操作来优化BP神经网络的权值和偏差,有助于BP模型更好地学习WiFi和地磁场指纹数据的特征.仿真结果表明, IDEBP算法能大大提高室内指纹定位的精度.WiFi signals are unstable in complex indoor environments and the distortion effects of buildings on the geomagnetic field results in the low accuracy of single-source positioning. Considering this, this study adopts multisource information fusion positioning technology that can effectively use WiFi and fingerprint data of the geomagnetic field for positioning and proposes an improved adaptive differential evolution algorithm to optimize the BP neural network(IDEBP). This method optimizes the weights and deviations of the BP neural network by improving the mutation, crossover, and selection operation of the differential evolution algorithm, which helps the BP model to better learn the characteristics of WiFi and fingerprint data of the geomagnetic field. The simulation shows that the proposed algorithm greatly improves the accuracy of indoor fingerprint positioning.

关 键 词:WIFI 地磁场 IDEBP 权值和偏差 室内定位 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TN92[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象