检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hong PEI Xiaosheng SI Changhua HU Jianxun ZHANG Dangbo DU Zhenan PANG Shengfei ZHANG
机构地区:[1]School of Missile Engineering,Rocket Force University of Engineering,Xi'an 710025,China [2]School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China
出 处:《Science China(Information Sciences)》2022年第6期168-184,共17页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.61833016,61922089,61773386,61573365,61573366,61903376,61773389,61673311);Shaanxi National Science Foundation(Grant Nos.2020JQ-489,2020JM-360,2020JQ-298);National Key R&D Program of China(Grant No.2018YFB1306100)。
摘 要:The realistic degradation process for the engineering equipment is generally stochastic and complicated owing to the uncertain operational condition and multiple functional loading,exhibiting the absolute nonlinear distinction.Such a nonlinear degradation process is widely modeled as a generalized diffusion process.When utilizing the generalized diffusion process-based model,certain model parameters are considered as the random variables to characterize the unit-to-unit discrepancies.Hence,the estimation of these kinds of parameters usually resorts to the Bayesian method.However,owing to the complex pattern of the model parameters in the generalized diffusion process,computing the Bayesian updated parameters requires plenty of repeated calculation and integration operations once the new degradation monitoring information is available.This will inevitably lower the computing efficiency and real-time performance.Toward this end,this paper presents an adaptive prognostic method based on the generalized diffusion process to determine the remaining useful life(RUL)of degraded equipment.First,a generalized diffusion process-based degradation modeling framework is constructed to describe the health performance of stochastic degraded equipment under complex conditions.Then,we utilize the maximum likelihood estimation(MLE)method to estimate the initial model parameters by analyzing the historical degradation information.Furthermore,a sequential Bayesian method is proposed to recursively update the stochastic model parameters in the generalized diffusion process for particular equipment in service.Unlike the existing studies utilizing the Bayesian method,the primary contrast in the presented method lies in that there is no need to implement the calculation process with complicated integration repeatedly utilizing the whole degradation information obtained before the current time.Particularly,the current measured information is incorporated into the estimates of the stochastic parameters in the previous time to determine th
关 键 词:generalized diffusion process stochastic model parameters remaining useful life maximum likelihood estimation sequential Bayesian methods
分 类 号:O212.8[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.178.138