Car-following behavior modeling driven by small data sets based on mnemonic extreme gradient boosting framework  被引量:2

在线阅读下载全文

作  者:Baichuan LOU Yufang LI Xiaoding LU Zhe XU 

机构地区:[1]Department of Vehicle Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China [2]Key Laboratory of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology),Ministry of Education,Chongqing 400000,China

出  处:《Science China(Information Sciences)》2022年第6期267-268,共2页中国科学(信息科学)(英文版)

基  金:supported by Opening Foundation of Key Laboratory of Advanced Manufacture Technology for Automobile Parts,Ministry of Education,China(Grant No.2019KLMT05);Natural Science Foundation of Chongqing(Grant No.cstc2019jcyj-msxmX0119)。

摘  要:Dear editor,In recent years,data-driven car-following models have been developed based on their ability to drill down to information in driving data and their flexibility.According to a study by Fleming et al.[1],the main limitation of existing methods is an insufficient amount of natural driving data.In addition,there are many situations during actual driving processes,such as those under extreme conditions[2]and in the early stages of car-following behavior modeling.In these cases,sparse data learning algorithms are indispensable.

关 键 词:BOOSTING EDITOR driving 

分 类 号:U463.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象