检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李文攀 王金妹 LI Wen-pan;WANG Jin-mei(Fuzhou University,Fuzhou,Fujian,350108,China)
机构地区:[1]福州大学经济与管理学院,福建福州350108
出 处:《武汉商学院学报》2022年第2期52-58,共7页Journal of Wuhan Business University
摘 要:随着互联网和大数据时代的发展,物流流量表现形式越发多元,其复杂性、时变性及非线性特征也愈发显著,预测难度大大增加。以往研究的焦点主要集中在预测方法上,对整体物流流量的分类和预测缺乏深入的系统性分析,各物流流量的预测需求与方法的适用性难以匹配。本文从预测对象和方法两个角度,系统梳理了物流流量智能预测领域的相关文献,在明确物流流量预测对象的基础上,进一步总结了各智能预测方法的优缺点和适用范围,以期为物流流量智能预测方法的选择提供一定的借鉴和参考。With the development of Internet and data technology,the logistics flux has had a more increasingly diversified manifestation,and its characteristics of complexity,time variance and non-linearity are also becoming increasingly distinctive,resulting in a great increase in the difficulty of prediction.Previous studies mainly focused on the methods of prediction,yet lacking in-depth and systematical analysis of the classification and prediction of the overall logistics flux.Therefore,it was difficult to match the prediction demand of each logistics flux to the applicability of the respective method.From the perspective of prediction objects and methods,this paper reviews relevant literature on intelligent prediction of logistics flux,clarifies prediction objects of logistics flux,and summarizes the advantages and disadvantages of each intelligent prediction method and its applicable scope,aiming to provide some reference for choosing a method of intelligent prediction of logistics flux.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33