检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡佩聪 杨文东 李佩 HU Peicong;YANG Wendong;LI Pei(College of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,China)
机构地区:[1]陆军工程大学通信工程学院,江苏南京210007
出 处:《陆军工程大学学报》2022年第3期22-28,共7页Journal of Army Engineering University of PLA
摘 要:针对受莱斯衰落影响的4QAM、16QAM、32QAM、64QAM、128QAM、256QAM六类信号,分别研究了卷积神经网络(CNN)模型以及特征参数结合深度神经网络(DNN)分类器模型的调制方式识别性能。CNN模型需要大量带标签的数据集以及很长的训练时间才能获得较好的识别性能,而特征参数结合深度神经网络分类器模型所需训练时间较短,但其分类性能受限于特征参数的设计。针对以上问题,研究了混合高阶矩作为特征参数集,再将DNN作为分类器对多进制正交幅度调制(MQAM)信号进行识别的方法。仿真结果表明,该方法在低信噪比情况下对受莱斯衰落影响的MQAM信号识别准确率高于CNN模型,且分类准确率上限明显高于采用高阶累积量作为特征参数的方法。The modulation recognition performance of different models, convolutional neural network(CNN) and designed feature parameters combined with deep neural network(DNN) classifier were studied respectively for identifying six types of signals affected by Rician fading which are 4 QAM, 16 QAM, 32 QAM, 64 QAM, 128 QAM and 256 QAM. A large number of labeled datasets and long-time training are needed for CNN model to obtain satisfying recognition performance. The model which combines designed feature parameters with DNN classifier requires shorter training time, but the classification accuracy of the model is also limited by the designed parameters. In view of the above situation, the mixed high order moments of MQAM signals were studied to construct characteristic parameters, and then DNN was used as a classifier to identify various multiple quadrature amplitude modulation(MQAM) signals. Simulation results show that the recognition accuracy of MQAM signals affected by Rician fading is higher than that of CNN model under the condition of low signal to noise ratios(SNRs), and the upper limit of classification accuracy is apparently higher than that of using high order cumulants as characteristic parameters.
关 键 词:调制识别 混合高阶矩 高阶累积量 卷积神经网络 深度神经网络
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.247.220