检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Pingzhi Yuan
机构地区:[1]School of Mathematical Science,South China Normal University,Guangzhou 510631,China
出 处:《Communications in Mathematical Research》2022年第2期136-156,共21页数学研究通讯(英文版)
摘 要:Let G be a finite abelian group,M a set of integers and S a subset of G.We say that M and S form a splitting of G if every nonzero element g of G has a unique representation of the form g=m s with m∈M and s∈S,while 0 has no such representation.The splitting is called purely singular if for each prime divisor p of|G|,there is at least one element of M is divisible by p.In this paper,we continue the study of purely singular splittings of cyclic groups.We prove that if k≥2 is a positive integer such that[−2 k+1,2 k+2]^(∗)splits a cyclic group Z m,then m=4 k+2.We prove also that if M=[−k_(1),k_(2)]^(∗)splits Z m purely singularly,and 15≤k_(1)+k_(2)≤30,then m=1,or m=k_(1)+k_(2)+1,or k_(1)=0 and m=2 k_(2)+1.
关 键 词:Splitter sets perfect codes factorizations of cyclic groups
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.215