Generalized Cyclotomic Mappings: Switching Between Polynomial, Cyclotomic, and Wreath Product Form  

在线阅读下载全文

作  者:Alexander Bors Qiang Wang 

机构地区:[1]School of Mathematics and Statistics,Carleton University,1125 Colonel By Drive,Ottawa ON K1S 5B6,Canada

出  处:《Communications in Mathematical Research》2022年第2期246-318,共73页数学研究通讯(英文版)

摘  要:This paper is concerned with so-called index d generalized cyclotomic mappings of a finite field F_(q), which are functions F_(q)→F_(q) that agree with a suitable monomial function x↦axr on each coset of the index d subgroup of F_(q)^(*). We discuss two important rewriting procedures in the context of generalized cyclotomic mappings and present applications thereof that concern index d generalized cyclotomic permutations of F_(q) and pertain to cycle structures, the classification of (q−1)-cycles and involutions, as well as inversion.

关 键 词:Finite fields CYCLOTOMY cyclotomic mappings permutation polynomials wreath product cycle structure INVOLUTION 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象